Login to your account

Username *
Password *
Remember Me

Blog With Right Sidebar

Treatment of Adult Primary Alveolar Proteinosis.

Related Articles

Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the accumulation of surfactant-like lipoproteinaceous material in the distal air spaces and terminal bronchi, which may lead to impaired gas exchange. This accumulation of surfactant is due to decreased clearance by the alveolar macrophages. Its primary, most common form, is currently considered an autoimmune disease. Better knowledge of the causes of PAP have led to the emergence of alternatives to whole lung lavage, although this is still considered the treatment of choice. Most studies are case series, often with limited patient numbers, so the level of evidence is low.

Since the severity of presentation and clinical course are variable, not all patients will require treatment. Due to the low level of evidence, some objective criteria based on expert opinion have been arbitrarily proposed in an attempt to define in which patients it is best to initiate treatment.

The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections.

Related Articles

Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast, eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice.

The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis, and increased cellular transformation.

This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis, and increased viral pathogenesis.

Aclidinium bromide/formoterol fixed-dose combination therapy for COPD: the evidence to date.

Related Articles

The quest for the right combination of bronchodilators with different mechanisms of action such as long-acting muscarinic antagonists and long-acting β-agonists in the management of stable moderate-to-severe chronic obstructive pulmonary disease (COPD) is a topic of intense research activity currently, given the rising morbidity and mortality due to this disease.

The fixed-dose combination of aclidinium bromide and formoterol fumarate in a single inhaler seems to offer superior advantages over either drugs given alone or as separate inhalers concurrently. Since the fixed-dose combination needs to be given twice daily, it is likely to achieve control of symptoms most crucial to the quality of life in COPD, namely, the morning hours. This is reflected in significant trough FEV1 (forced expiratory volume in 1 second) improvements after the dose. This paper reviews the various studies related to this combination put in the perspective of its safety and efficacy and potential benefits over other therapeutic options. However, there is a dearth of data on the long-term safety and efficacy in terms of improvement in lung function.

This combination could emerge as an excellent option in the management of stable COPD if data on exacerbation rates and patient-reported outcomes become available from longer-term studies. Moreover, we need some more studies to define the ideal phenotype of COPD best suited for the use of this combination.

An official american thoracic society workshop report: stem cells and cell therapies in lung biology and diseases.

The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont.

The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities.

The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.

Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

Related Articles

Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD).

Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa.

Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the development of predictive biomarkers of substantial decline in lung function.

Search